Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs

Author:

Chen Paula R1,Uh Kyungjun2,Monarch Kaylynn2,Spate Lee D23,Reese Emily D2,Prather Randall S23,Lee Kiho23

Affiliation:

1. United States Department of Agriculture—Agricultural Research Service, Plant Genetics Research Unit , Columbia, MO , USA

2. Division of Animal Sciences, University of Missouri , Columbia, MO , USA

3. National Swine Resource and Research Center, University of Missouri , Columbia, MO , USA

Abstract

AbstractGrowth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9−/−) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9−/− and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9−/−), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9−/− gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.

Funder

National Institutes of Health

National Swine Resource and Research Center

National Institute of Allergy and Infectious Diseases

National Institute of Heart, Lung and Blood, and the Office of the Director

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3