Overview of the Multispecies Ovary Tissue Histology Electronic Repository

Author:

Watanabe Karen H12,Dietrich Suzanne W12,Ding Yian12,Ma Wenli12,Sluka James P34,Zelinski Mary B5

Affiliation:

1. School of Mathematical and Natural Sciences , , Glendale, Arizona , United States

2. Arizona State University , , Glendale, Arizona , United States

3. Biocomplexity Institute , , Bloomington, Indiana , United States

4. Indiana University , , Bloomington, Indiana , United States

5. Oregon National Primate Research Center , Beaverton, Oregon , United States

Abstract

Abstract The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability.

Funder

National Science Foundation

DPCPSI

ORIP

NIH

Oregon National Primate Research Center

Publisher

Oxford University Press (OUP)

Reference12 articles.

1. Comment: the FAIR guiding principles for scientific data management and stewardship;Wilkinson;Sci Data,2016

2. Ding Y, Shah G, Ma W, Chu T-Y, Zelinski MB, Watanabe KH. Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) Slide Scanning Protocol. Geneva, Switzerland, Zenodo; 2024. https://doi.org/10.5281/zenodo.10636869  Accessed 15 January 2023.

3. Toward a common standard for data and specimen provenance in life sciences;Wittner;Learn Health Syst,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3