Oxytocin-like signal regulates Lh cells directly but not Fsh cells in the ricefield eel Monopterus albus†

Author:

Yang Wei1,Zhang Ning1,Wu Yangsheng1,Zhang Lanxin1,Zhang Lihong12,Zhang Weimin12

Affiliation:

1. Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China

2. Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China

Abstract

Abstract The synthesis and release of LH and FSH in the pituitary of vertebrates are differentially regulated during gonadal development and maturation. However, the underlying neuroendocrine mechanisms remain to be fully elucidated. The present study examined the possible involvement of isotocin (Ist), an oxytocin-like neuropeptide, in the regulation of Lh and Fsh in a teleost, the ricefield eel Monopterus albus. The immunoreactive isotocin receptor 2 (Istr2) was shown to be localized to Lh but not Fsh cells. In contrast, immunoreactive isotocin receptor 1 (Istr1) was not observed in either Lh or Fsh cells in the pituitary. Interestingly, Lh cells in female ricefield eels expressed Istr2 and secreted Lh in response to Ist challenge stage-dependently and in correlation with ovarian vitellogenesis. Moreover, Ist decreased Lh contents in the pituitary of female fish, indicating its stimulatory roles on Lh release in vivo. The induction of Lh release by Ist in dispersed pituitary cells was blocked by a PLC or IP3R inhibitor but not by a PKA or PKC inhibitor, indicating the involvement of the IP3/Ca2+ pathway. Collectively, the above results indicate that isotocin may bind to Istr2 to stimulate Lh release via the IP3/Ca2+ pathway, and play important roles in the ovarian maturation in ricefield eels. Furthermore, the present study suggests a novel neuroendocrine mechanism underlying the differential regulation of Lh and Fsh in vertebrates.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3