Deletion of Orc4 during oogenesis severely reduces polar body extrusion and blocks zygotic DNA replication

Author:

Nguyen Hieu1,Wu Hongwen1,Ung Anna1,Yamazaki Yukiko1,Fogelgren Ben1,Ward W Steven12

Affiliation:

1. Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA

2. Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract

Abstract Origin recognition complex subunit 4 (ORC4) is a DNA-binding protein required for DNA replication. During oocyte maturation, after the last oocyte DNA replication step and before zygotic DNA replication, the oocyte undergoes two meiotic cell divisions in which half the DNA is ejected in much smaller polar bodies. We previously demonstrated that ORC4 forms a cytoplasmic cage around the DNA that is ejected in both polar body extrusion (PBE) events. Here, we used ZP3 activated Cre to delete exon 7 of Orc4 during oogenesis to test how it affected both predicted functions of ORC4: its recently discovered role in PBE and its well-known role in DNA synthesis. Orc4 deletion severely reduced PBE. Almost half of Orc4-depleted germinal vesicle (GV) oocytes cultured in vitro were arrested before anaphase I (48%), and only 25% produced normal first polar bodies. This supports the role of ORC4 in PBE and suggests that transcription of the full-length Orc4 during oogenesis is required for efficient PBE. Orc4 deletion also abolished zygotic DNA synthesis. Fewer Orc4-depleted oocytes developed to the metaphase II (MII) stage, and after activation these oocytes were arrested at the two-cell stage without undergoing DNA synthesis. This confirms that transcription of full-length Orc4 after the primary follicle stage is required for zygotic DNA replication. The data also suggest that MII oocytes do not have a replication licensing checkpoint as cytokinesis progressed without DNA synthesis. Together, the data confirm that oocyte ORC4 is important for both PBE and zygotic DNA synthesis.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3