Maternal perfluorooctane sulfonic acid exposure during rat pregnancy causes hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in the uterine arteries

Author:

Dangudubiyyam Sri Vidya12,Mishra Jay S1,Song Ruolin1,Kumar Sathish123

Affiliation:

1. Department of Comparative Biosciences , School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA

2. Endocrinology–Reproductive Physiology Program , University of Wisconsin, Madison, WI, USA

3. Department of Obstetrics and Gynecology , School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA

Abstract

Abstract Epidemiological studies show a strong association between environmental exposure to perfluorooctane sulfonic acid (PFOS) and preeclampsia and fetal growth restriction; however, the underlying mechanisms are unclear. We tested the hypothesis that gestational PFOS exposure leads to pregnancy complications via alterations in uterine vascular endothelium-independent angiotensin II-related mechanisms and endothelium-derived factors such as nitric oxide. Pregnant Sprague-Dawley rats were exposed to PFOS 0.005, 0.05, 0.5, 5, 10, and 50 μg/mL through drinking water from gestational day 4 to 20, and dams with PFOS 50 μg/mL were used to assess mechanisms. PFOS exposure dose dependently increased maternal blood pressure but decreased fetal weights. Uterine artery blood flow was lower and resistance index was higher in the PFOS dams. In PFOS dams, uterine artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K+ depolarization and phenylephrine were unaffected. Plasma angiotensin II levels were not significantly different between control and PFOS dams; however, PFOS exposure significantly increased Angiotensin II type 1 receptor (AGTR1) and decreased AGTR2 protein levels in uterine arteries. Endothelium-dependent relaxation response to acetylcholine was significantly reduced with decreased endothelial nitric oxide synthase expression in the uterine arteries of PFOS dams. Left ventricular hypertrophy and fibrosis were observed, along with increased ejection fraction and fractional shortening in PFOS dams. These results suggest that elevated maternal PFOS levels decrease uterine blood flow and increase vascular resistance via heightened angiotensin II-mediated vasoconstriction and impaired endothelium-dependent vasodilation, which provides a molecular mechanism linking elevated maternal PFOS levels with gestational hypertension and fetal growth restriction.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Reference101 articles.

1. Cardiovascular physiology of pregnancy;Sanghavi;Circulation,2014

2. Circulatory changes in the reproductive tissues of ewes during pregnancy;Rosenfeld;Gynecol Invest,1974

3. Maternal uterine vascular remodeling during pregnancy;Osol;Physiology (Bethesda),2009

4. Uteroplacental circulation in normal pregnancy and preeclampsia: functional adaptation and maladaptation;Hu;Int J Mol Sci,2021

5. Mechanisms of uterine artery dysfunction in pregnancy complications;Morton;J Cardiovasc Pharmacol,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3