Upregulation of FOXA2 in uterine luminal epithelium and vaginal basal epithelium of epiERα−/− (Esr1fl/flWnt7aCre/+) mice

Author:

Hancock Jonathan Matthew12,Li Yuehuan1,Martin Taylor Elijah12,Andersen Christian Lee12,Ye Xiaoqin12

Affiliation:

1. Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia , Athens , USA

2. Interdisciplinary Toxicology Program, University of Georgia , Athens , USA

Abstract

Abstract Forkhead box protein A2 (FOXA2) is a pioneer transcription factor important for epithelial budding and morphogenesis in different organs. It has been used as a specific marker for uterine glandular epithelial cells (GE). FOXA2 has close interactions with estrogen receptor α (ERα). ERα binding to Foxa2 gene in the uterus indicates its regulation of Foxa2. The intimate interactions between ERα and FOXA2 and their essential roles in early pregnancy led us to investigate the expression of FOXA2 in the female reproductive tract of pre-implantation epiERα−/− (Esr1fl/flWnt7aCre/+) mice, in which ERα is conditionally deleted in the epithelium of reproductive tract. In the oviduct, FOXA2 is detected in the ciliated epithelial cells of ampulla but absent in the isthmus of day 3.5 post-coitum (D3.5) Esr1fl/fl control and epiERα−/− mice. In the uterus, FOXA2 expression in the GE appears to be comparable between Esr1fl/fl and epiERα−/− mice. However, FOXA2 is upregulated in the D0.5 and D3.5 but not PND25-28 epiERα−/− uterine luminal epithelial cells (LE). In the vagina, FOXA2 expression is low in the basal layer and increases toward the superficial layer of the D3.5 Esr1fl/fl vaginal epithelium, but FOXA2 is detected in the basal, intermediate, and superficial layers, with the strongest FOXA2 expression in the intermediate layers of the D3.5 epiERα−/− vaginal epithelium. This study demonstrates that loss of ERα in LE and vaginal basal layer upregulates FOXA2 expression in these epithelial cells during early pregnancy. The mechanisms for epithelial cell-type specific regulation of FOXA2 by ERα remain to be elucidated.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3