The anatomy, movement, and functions of human sperm tail: an evolving mystery

Author:

Kumar Naina1,Singh Amit Kant2

Affiliation:

1. Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Guntur, Andhra Pradesh 522503, India

2. Department of Physiology, U.P. University of Medical Sciences, Etawah 206130, Uttar Pradesh, India

Abstract

Abstract Sperms have attracted attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and different function to play in carrying life. Sperm tail is most complicated structure with more than 1000 proteins involved in its functioning. With the advent of three-dimensional microscopes, many studies are undergoing to understand exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Each subunit of tail, including axonemal, peri-axonemal structures, plays essential roles in sperm motility, capacitation, hyperactivation, fertilization. Furthermore, over 2300 genes are involved in spermatogenesis. A number of genetic mutations have been linked with abnormal sperm flagellar development leading to motility defects and male infertility. It was found that 6% of male infertility cases are related to genetic causes, and 4% of couples undergoing intracytoplasmic sperm injection for male subfertility have chromosomal abnormalities. Hence, an understanding of sperm tail development and genes associated with its normal functioning can help in better diagnosis of male infertility and its management. There is still a lot that needs to be discovered about genes, proteins contributing to normal human sperm tail development, movement, and role in male fertility. Sperm tail has complex anatomy, with surrounding axoneme having 9 + 2 microtubules arrangement along its entire length and peri-axonemal structures that contribute in sperm motility and fertilization. In future sperm tail-associated genes, proteins and subunits can be used as markers of male fertility.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Reference114 articles.

1. Antoine van Leeuwenhoek and the discovery of sperm;Howards;Fertil Steril,1997

2. Spermatozoa: a historical perspective;Puerta Suárez;Int J Fertil Steril,2018

3. Gene regulation in spermatogenesis;Maclean;Curr Top Dev Biol,2005

4. Clinical genetic testing for male factor infertility: current applications and future directions;Hotaling;Andrology,2014

5. Formation and function of sperm tail structures in association with sperm motility defects;Lehti;Biol Reprod,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3