Protective effects of astaxanthin on lipopolysaccharide-induced inflammation in bovine endometrial epithelial cells†

Author:

Wan Fa-Chun1234,Zhang Chen4,Jin Qing123,Wei Chen123,Zhao Hong-Bo123,Zhang Xiang-Lun123,You Wei123,Liu Xiao-Mu123,Liu Gui-Fen123,Liu Yi-Fan123,Tan Xiu-Wen123

Affiliation:

1. Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji’nan City, China

2. Shandong Key Lab of Animal Disease Control and Breeding, Ji’nan City, China

3. Shandong Provincial Testing Center of Beef Cattle Performance, Ji’nan City, China

4. College of Life Sciences, Shandong Normal University, Ji’nan City, China

Abstract

Abstract Astaxanthin (AST), a natural antioxidant carotenoid, has been shown to exert anti-inflammatory effects. However, to our knowledge, no study has specifically addressed the potential protective effects of AST against bovine endometritis. The purpose of this study was to examine whether treatment with AST could protect endometrial epithelial cells against lipopolysaccharide (LPS)-induced inflammatory injury. Treatment of bovine endometrial (BEND) epithelial cell line with AST reduced LPS-induced production of interleukin-6 and tumor necrosis factor-alpha, increased the cellular activity of superoxide dismutase and catalase, decreased the proportion of apoptotic cells, and promoted the production of insulin-like growth factor and epithelial growth factor. The effects of AST were mediated through the downregulation of B-cell lymphoma 2 (Bcl-2) associated X, apoptosis regulator (Bax), and cleaved caspase-3 and through the upregulation of Bcl-2. Moreover, AST significantly increased the expression of the tight junction proteins (TJP) claudin, cadherin-1, and TJP1, which play an essential role in the maintenance of host endometrial defense barrier against pathogen infection. Collectively, these results demonstrated that treatment with AST protected against oxidative stress, prevented cell apoptosis, promoted BEND cells viability, and increased the production of growth factors, in addition to activating the endometrial defense barrier. Therefore, AST is a promising therapeutic agent for the prevention and treatment of endometritis. This finding is of utmost importance in the present times when the excessive use of antibiotics has resulted in the development of antibiotic-resistant bacteria.

Funder

China Agriculture Research System

Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3