Differential sensitivity of inbred mouse strains to ovarian damage in response to low-dose total body irradiation†

Author:

Quan Natalie1,Harris Lacey R2,Halder Ritika2,Trinidad Camille V2,Johnson Brian W3,Horton Shulamit1,Kimler Bruce F4,Pritchard Michele T2,Duncan Francesca E15

Affiliation:

1. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

2. Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA

3. Department of Comparative Medicine, University of Washington, Seattle, WA, USA

4. Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA

5. Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA

Abstract

Abstract Radiation induces ovarian damage and accelerates reproductive aging. Inbred mouse strains exhibit differential sensitivity to lethality induced by total body irradiation (TBI), with the BALB/cAnNCrl (BALB/c) strain being more sensitive than the 129S2/SvPasCrl (129) strain. However, whether TBI-induced ovarian damage follows a similar pattern of strain sensitivity is unknown. To examine this possibility, female BALB/c and 129 mice were exposed to a single dose of 1 Gy (cesium-137 γ) TBI at 5 weeks of age, and ovarian tissue was harvested for histological and gene expression analyses 2 weeks post exposure. Sham-treated mice served as controls. 1 Gy radiation nearly eradicated the primordial follicles and dramatically decreased the primary follicles in both strains. In contrast, larger growing follicles were less affected in the 129 relative to BALB/c strain. Although this TBI paradigm did not induce detectable ovarian fibrosis in either of the strains, we did observe strain-dependent changes in osteopontin (Spp1) expression, a gene involved in wound healing, inflammation, and fibrosis. Ovaries from BALB/c mice exhibited higher baseline Spp1 expression that underwent a significant decrease in response to radiation relative to ovaries from the 129 strain. A correspondingly greater change in the ovarian matrix, as evidenced by reduced ovarian hyaluronan content, was also observed following TBI in BALB/c mice relative to 129 mice. These early changes in the ovary may predispose BALB/c mice to more pronounced late effects of TBI. Taken together, our results demonstrate that aspects of ovarian damage mirror other organ systems with respect to overall strain-dependent radiation sensitivity.

Funder

National Institute of General Medical Sciences

Mechanisms of Liver Injury and Diseases Center of Biomedical Research Excellence

National Centers for Translational Research in Reproduction and Infertility

Center for Reproductive Health After Disease

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3