Inactivation of Wt1 causes pre-granulosa cell to steroidogenic cell transformation and defect of ovary development†

Author:

Cen Changhuo1,Chen Min2,Zhou Jingjing23,Zhang Lianjun23,Duo Shuguang2,Jiang Lin1,Hou Xiaohui1,Gao Fei23

Affiliation:

1. School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China, 563000

2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 100101

3. University of Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Wt1 gene encodes a nuclear transcription factor which is specifically expressed in ovarian granulosa cells and testicular Sertoli cells. Our previous studies demonstrated that Wt1 is required for the lineage specification of supporting cells and inactivation of Wt1 results in Sertoli cells to Leydig-like cells transformation. To test whether Wt1 is also involved in lineage maintenance of granulosa cells during ovary development, Wt1 was specifically deleted in pre-granulosa cells using Foxl2-cre. We found that the female Wt1−/flox; Foxl2-cre mice were infertile with atrophic ovaries and no growing follicles with multiple layers of granulosa cells were observed. A large number of 3β-HSD-positive steroidogenic cells were detected in ovaries of Wt1−/flox; Foxl2-cre mice during embryonic stage and these cells were derived from Foxl2-expressing pre-granulosa cells. The quantitative results showed the expression of granulosa cell marker genes (Foxl2, Follistatin) was downregulated and steroidogenic cell marker genes (3β-HSD, Cyp11a1, Star and Sf1) was dramatically increased in Wt1−/flox; Foxl2-cre ovaries. We also found that the meiosis of germ cells in Wt1−/flox; Foxl2-cre ovaries was delayed but not arrested. This study demonstrates that Wt1 is required for lineage maintenance of granulosa cells and inactivation of Wt1 results in pre-granulosa cells to steroidogenic cells transformation which in turn causes the defect of ovary development.

Funder

National key R&D program of China

National Science Fund for Distinguished Young Scholars

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Zunyi medical university postgraduate research fund project

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3