Effect of IGF1 and FSH on the function of granulosa cells from prehierarchal follicles in chickens

Author:

Francoeur Laurie1,Scoville Deena M1,Johnson Patricia A1

Affiliation:

1. Cornell University Department of Animal Science, College of Agriculture and Life Sciences, , Ithaca, NY , USA

Abstract

Abstract Insulin-like growth factor 1 (IGF1) is an essential regulator of mammalian follicle development and synergizes with follicle-stimulating hormone (FSH) to amplify its effects. In avian preovulatory follicles, IGF1 increases the expression of genes involved in steroidogenesis and progesterone and inhibin A production. The role of IGF1 in prehierarchal follicles has not been well studied in chickens. The aim of this study was to investigate the role of IGF1 in granulosa cells from prehierarchal follicles and to determine whether IGF1 and FSH synergize to promote follicle development. Granulosa cells of 3–5 and 6–8 mm prehierarchal follicles were cultured with IGF1 (0, 10, 100 ng/mL) in the presence or absence of FSH (0, 10 ng/mL). Cell proliferation, expression of genes important in follicle development (FSHR, IGF1R, AMH, STAR, CYP11A1, INHA, and INHBA), and progesterone production were evaluated following treatment. IGF1 treatment alone significantly increased STAR, CYP11A1, and INHBA mRNA expression and cell proliferation in granulosa cells of 6–8 mm follicles. IGF1 and FSH synergized to increase STAR mRNA expression in 6–8 mm follicles. IGF1 and FSH co-treatment were necessary to increase INHA mRNA expression in 6–8 mm follicles. Although IGF1 significantly increased the expression of genes involved in steroidogenesis, progesterone production in granulosa cells of 6–8 mm follicles was not affected. IGF1 did not affect AMH mRNA expression, although FSH significantly decreased AMH expression in granulosa cells of 3–5 mm follicles. These results suggest that IGF1 may act with FSH to promote follicle selection at the prehierarchal follicle stage.

Funder

USDA

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations of the function of AMH in granulosa cells in hens;General and Comparative Endocrinology;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3