ZC3H4—a novel Cys-Cys-Cys-His-type zinc finger protein—is essential for early embryogenesis in mice†

Author:

Su Jianmin12,Miao Xiaosu1,Archambault Danielle1,Mager Jesse1,Cui Wei13

Affiliation:

1. Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA

2. Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China

3. Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA

Abstract

Abstract Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4—a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3