Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure

Author:

Li Shuang12,Shi Yan12,Dang Yanna12,Hu Bingjie12,Xiao Lieying12,Zhao Panpan12,Wang Shaohua12,Zhang Kun12

Affiliation:

1. Laboratory of Mammalian Molecular Embryology , College of Animal Sciences, , Hangzhou, Zhejiang , China

2. Zhejiang University , College of Animal Sciences, , Hangzhou, Zhejiang , China

Abstract

Abstract Linker histone H1 binds to the nucleosome and is implicated in the regulation of the chromatin structure and function. The H1 variant H1FOO is heavily expressed in oocytes and early embryos. However, given the poor homology of H1FOO among mammals, the functional role of H1FOO during preimplantation embryonic development remains largely unknown, especially in domestic animals. Here, we find that H1FOO is not only expressed in oocytes and preimplantation embryos but granulosa cells and spermatids in cattle. We then demonstrate that the interference of H1FOO results in preimplantation embryonic developmental arrest in cattle using either RNA editing or Trim-Away approach. H1FOO depletion leads to a compromised expression of critical lineage-specific genes at the morula stage and affects the establishment of cell polarity. Interestingly, H1FOO depletion causes a significant increase in the expression of genes encoding other linker H1 and core histones. Concurrently, there is an increase of H3K9me3 and H3K27me3, two markers of repressive chromatin and a decrease of H4K16ac, a marker of open chromatin. Importantly, overexpression of bovine H1FOO results in severe embryonic developmental defects. In sum, we propose that H1FOO controls the proper chromatin structure that is crucial for the fidelity of cell polarization and lineage specification during bovine preimplantation development.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3