Molecular profiling demonstrates modulation of immune cell function and matrix remodeling during luteal rescue†

Author:

Hughes Camilla K1ORCID,Maalouf Samar W1,Liu Wan-Sheng1ORCID,Pate Joy L1

Affiliation:

1. Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

Abstract The corpus luteum (CL) is essential for maintenance of pregnancy in all mammals and luteal rescue, which occurs around day 16–19 in the cow, is necessary to maintain luteal progesterone production. Transcriptomic and proteomic profiling were performed to compare the day 17 bovine CL of the estrous cycle and pregnancy. Among mRNA and proteins measured, 140 differentially abundant mRNA and 24 differentially abundant proteins were identified. Pathway analysis was performed using four programs. Modulated pathways included T cell receptor signaling, vascular stability, cytokine signaling, and extracellular matrix remodeling. Two mRNA that were less in pregnancy were regulated by prostaglandin F2A in culture, while two mRNA that were greater in pregnancy were regulated by interferon tau. To identify mRNA that could be critical regulators of luteal fate, the mRNA that were differentially abundant during early pregnancy were compared to mRNA that were differentially abundant during luteal regression. Eight mRNA were common to both datasets, including mRNA related to regulation of steroidogenesis and gene transcription. A subset of differentially abundant mRNA and proteins, including those associated with extracellular matrix functions, were predicted targets of differentially abundant microRNA (miRNA). Integration of miRNA and protein data, using miRPath, revealed pathways such as extracellular matrix–receptor interactions, abundance of glutathione, and cellular metabolism and energy balance. Overall, this study has provided a comprehensive profile of molecular changes in the corpus luteum during maternal recognition of pregnancy and has indicated that some of these functions may be miRNA-regulated.

Funder

United States Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3