The fate of porcine sperm CRISP2 from the perinuclear theca before and after in vitro fertilization

Author:

Zhang Min1234,Bromfield Elizabeth G125,Helms J Bernd12,Gadella Bart M1234

Affiliation:

1. Department of Biomolecular Health Sciences , Faculty of Veterinary Medicine, , the Netherlands

2. Utrecht University , Faculty of Veterinary Medicine, , the Netherlands

3. Department of Farm Animal Health , Faculty of Veterinary Medicine, , Utrecht , the Netherlands

4. Utrecht University , Faculty of Veterinary Medicine, , Utrecht , the Netherlands

5. Priority Research Centre for Reproductive Science, The University of Newcastle , New South Wales , Australia

Abstract

AbstractIn a previous study, we reported that porcine sperm cysteine-rich secretory protein 2 (CRISP2) is localized in the post-acrosomal sheath-perinuclear theca (PT) as reduction-sensitive oligomers. In the current study, the decondensation and removal of CRISP2 was investigated during in vitro sperm capacitation, after both the induction of the acrosome reaction and in vitro fertilization. Confocal immunofluorescent imaging revealed that additional CRISP2 fluorescence appeared on the apical ridge and on the equatorial segment (EqS) of the sperm head following capacitation, likely due to cholesterol removal. After an ionophore A23187-induced acrosome reaction, CRISP2 immunofluorescence disappeared from the apical ridge and the EqS area partly not only owing to the removal of the acrosomal shroud vesicles, but to its presence in a subdomain of EqS. The fate of sperm head CRISP2 was further examined post-fertilization. In vitro matured porcine oocytes were co-incubated with boar sperm cells for 6–8 h and the zygotes were processed for CRISP2 immunofluorescent staining. Notably, decondensation of CRISP2, and thus of the sperm PT, occurred while the sperm nucleus was still fully condensed. CRISP2 was no longer detectable in fertilized oocytes in which sperm nuclear decondensation and paternal pronucleus formation were apparent. This rapid dispersal of CRISP2 in the PT is likely regulated by redox reactions for which its cysteine-rich domain is sensitive. Reduction of disulfide bridges within CRISP2 oligomers may be instrumental for PT dispersal and elimination.

Funder

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3