Temporal changes in the corpus luteum during early pregnancy reveal regulation of pathways that enhance steroidogenesis and suppress luteolytic mechanisms†

Author:

Hughes C H K1,Inskeep E K2,Pate J L1

Affiliation:

1. Center for Reproductive Biology & Health, Department of Animal Science, Pennsylvania State University, University Park, PA, USA

2. Division of Animal & Nutritional Sciences, West Virginia University, Morgantown, WV, USA

Abstract

AbstractAlthough rescue of the corpus luteum (CL) is required for pregnancy, luteal function during maternal recognition of pregnancy remains largely unexplored. CL were collected from pregnant cattle on days 14, 17, 20, and 23, to encompass the maternal recognition of pregnancy period. Next-generation sequencing was used to profile mRNA abundance during this time, while tandem mass spectrometry and nanostring technology were used to profile proteins and miRNA, respectively. A total of 1157 mRNA were differentially abundant, while 27 miRNA changed, and 29 proteins tended to change. mRNA that increased were regulators of interferon signaling and DNA repair, while those that decreased were associated with luteolytic processes, such as calcium signaling and matrix metallopeptidase (MMP) signaling, indicating inhibition of these processes. One of these, MMP12, was regulated by prostaglandin F2A in vitro. mRNA that were maximally abundant on day 20 were primarily associated with immune processes. Two of these, C-C motif chemokine ligand 1 and NFKB inhibitor alpha, were regulated by interferon tau in vitro. MiRNA that increased were predicted to inhibit phosphatidylinositol signaling, while those that decreased may be negative regulators of steroidogenesis. One protein that was greater on day 20 than on day 14 was aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which synthesizes retinoic acid. Pharmacological inhibition of this enzyme, or of retinoic acid receptor signaling, led to suppression of progesterone production in vitro. Overall, these data indicate that there are changes in the CL of pregnancy that are important for continued luteal function.

Funder

Agriculture and Food Research Initiative Competitive

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3