4D label-free quantitative proteomic analysis identifies CRABP1 as a novel candidate gene for litter size in rabbits

Author:

Bao Zhiyuan1,Chen Yang12,Li Jiali1,Cai Jiawei1,Yang Jie1,Zhai Pin3,Zhao Bohao12,Wu Xinsheng12

Affiliation:

1. College of Animal Science and Technology, Yangzhou University , Yangzhou, Jiangsu , China

2. Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University , Yangzhou, Jiangsu , China

3. Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China

Abstract

Abstract In commercial rabbit breeding, litter size is a crucial reproductive trait. This trait directly determines the reproductive ability of female rabbits and is crucial for evaluating the production efficiency. We here compared differentially expressed proteins of in the ovary tissue from New Zealand female rabbits with high (H) and low (L) litter sizes by using 4D label-free quantitative proteomic technology and identified 92 differential proteins. The biological functions of these proteins were revealed through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Most distributions of GO and KEGG were related to reproduction, growth development, and metabolism. Furthermore, a novel candidate gene cellular retinoic acid binding protein-1 (CRABP1), which was highly expressed in the L group, was selected for further biological function verification. The Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis revealed that CRABP1 can promote granulosa cell (GC) apoptosis and inhibit GC proliferation. Furthermore, qRT-PCR and western blotting analysis revealed that CRABP1 regulates the genes (HSD17B1, Wnt-10b, FSHR, TAF4B, BMP15, and BMP6) and protein (Wnt-10b) associated with steroid hormone synthesis and follicle development. The PCR product direct sequencing method revealed single nucleotide polymorphisms in the core promoter region of CRABP1. Luciferase activity assays revealed that the transcriptional activity of the GG genotype was significantly higher than that of the TT or TG genotype. Different genotypes are accompanied by changes in transcription factors, which indicates that T-359G polymorphism can regulate CRABP1 expression. In general, we identified litter size-related genes and revealed the mechanism underlying the effect of CRABP1 on litter size. CRABP1 serves as a key factor in the reproductive capacity of rabbits and can act as a molecular biomarker for the breeding of New Zealand rabbits.

Funder

Modern Agricultural Industrial System Special Funding

National Natural Science Foundation of China

Jiangsu Agricultural Industry Technology System

Graduate Research and Innovation Projects in Jiangsu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3