Functional study of distinct domains of Dux in improving mouse SCNT embryonic development†

Author:

Huang Xingwei1,Hu Xinglin1,Jiang Qi1,Cao Qianzi1,Wu Yanshuang1,Lei Lei1

Affiliation:

1. Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China

Abstract

Abstract Two-cell-like (2C-like) embryonic stem cells (ESCs) are a small group of ESCs that spontaneously express zygotic genome activation (ZGA) genes and repeats, such as Zscan4 and murine endogenous retrovirus with leucine (MERVL), and are specifically expressed in 2-cell-stage mouse embryos. Although numerous types of treatment and agents elevate the transition of ESCs to 2C-like ESCs, Dux serves as a critical factor in this transition by increasing the expression of Zscan4 and MERVL directly. However, the loss of Dux did not impair the birth of mice, suggesting that Dux may not be the primary transitioning factor in fertilized embryos. It has been reported that for 2-cell embryos derived from somatic cell nuclear transfer (SCNT) and whose expression of ZGA genes and repeats was aberrant, Dux improved the reprogramming efficiency by correcting aberrant H3K9ac modification via its C-terminal domain. We confirmed that the overexpression of full-length Dux mRNA in SCNT embryos improved the efficiency of preimplantation development (62.16% vs. 41.26% with respect to controls) and also increased the expression of Zscan4 and MERVL. Furthermore, we found that the N-terminal double homeodomains of Dux were indispensable for Dux localization and function. The intermediate region was essential for MERVL and Zscan4 activation, and the C-terminal domain was important for elevating level of H3K27ac. Mutant Dux mRNA containing N-terminal double homeodomains with the intermediate region or the C-terminal domain also improved the preimplantation development of SCNT embryos. This is the first report focusing on distinguishing functional domains of Dux in embryos derived from SCNT.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3