Neither gonadotropin nor cumulus cell expansion is needed for the maturation of competent porcine oocytes in vitro†

Author:

Redel Bethany K1,Spate Lee D1,Yuan Ye2,Murphy Clifton N1,Roberts R Michael13,Prather Randall S1

Affiliation:

1. Division of Animal Sciences, University of Missouri, Columbia, MO, USA

2. Colorado Center for Reproductive Medicine, Lone Tree, CO, USA

3. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA

Abstract

Abstract In-vitro maturation (IVM) of oocytes from immature females is widely used in assisted reproductive technologies. Here we illustrate that cumulus cell (CC) expansion, once considered a key indicator of oocyte quality, is not needed for oocytes to mature to the metaphase II (MII) stage and to gain nuclear and cytoplasmic competence to produce offspring. Juvenile pig oocytes were matured in four different media: (1) Basal (−gonadotropins (GN) − FLI); (2) −GN + FLI (supplement of FGF2, LIF, and IGF1); (3) +GN − FLI; and (4) +GN + FLI. There was no difference in maturation to MII or progression to the blastocyst stage after fertilization of oocytes that had been matured in −GN + FLI medium and oocytes matured in +GN + FLI medium. Only slight CC expansion occurred in the two media lacking GN compared with the two where GN was present. The cumulus-oocytes-complexes (COC) matured in +GN + FLI exhibited the greatest expansion. We conclude that FLI has a dual role. It is directly responsible for oocyte competence, a process where GN are not required, and, when GN are present, it has a downstream role in enhancing CC expansion. Our study also shows that elevated phosphorylated MAPK may not be a necessary correlate of oocyte maturation and that the greater utilization of glucose by COC observed in +GN + FLI medium probably plays a more significant role to meet the biosynthetic needs of the CC to expand than to attain oocyte developmental competence. Gene expression analyses have not been informative in providing a mechanism to explain how FLI medium enhances oocyte competence without promoting CC expansion.

Funder

National Agriculture and Food Research Organization

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3