Lrp13a and Lrp13b serve as vitellogenin receptors in the ovary of zebrafish

Author:

Liu Zhiquan1,Zhang Nan1,Wang Chuangxin1,Shi Lina1,Hu Yixuan1,Wang Yamei1,Li Jianzhen1

Affiliation:

1. College of Life Sciences, Northwest Normal University , Lanzhou , China

Abstract

Abstract In oviparous animals, egg yolk is largely derived from vitellogenin, which is taken up from the maternal circulation by the growing oocytes via the vitellogenin receptor. Recently, a novel member of the lipoprotein receptor superfamily termed low-density lipoprotein receptor-related protein 13 was identified and proposed as a candidate of vitellogenin receptor in oviparous animals. However, the roles of low-density lipoprotein receptor-related protein 13 in vitellogenesis are still poorly defined. Here, we investigated the expression, vitellogenin-binding properties, and function of low-density lipoprotein receptor-related protein 13 in zebrafish. Two different lrp13 genes termed lrp13a and lrp13b were found in zebrafish. Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction revealed both lrp13s to be predominantly expressed in zebrafish ovary, and in situ hybridization detected both lrp13s transcripts in the ooplasm of early stage oocytes. Two yeast hybrid studies showed that among eight vitellogenins of zebrafish, Vtg1, 2, and 3 bind to Lrp13a, while Vtg1, 2, and 5 bind to Lrp13b. We created zebrafish lrp13a and lrp13b mutant lines using CRISPR/Cas9. Knockout of lrp13a leads to a male-biased sex ratio and decreased diameter of embryo yolk, while knockout of lrp13b and double knockout of lrp13a and lrp13b leads to the delay of vitellogenesis, followed by follicular atresia. These phenotypes of mutants can be explained by the disruption of vitellogenesis in the absence of Lrp13s. Taken together, our results indicate that both Lrp13a and Lrp13b can serve as vitellogenin receptors in zebrafish among other vitellogenin receptors that are not yet described.

Funder

Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3