The improvement of inflammatory infiltration and pregnancy outcome in mice with recurrent spontaneous abortion by human amniotic mesenchymal stem cells

Author:

Xiao Yi1,Zeng Fanyu2,Sun Jingli3

Affiliation:

1. Graduate School of China Medical University , Shenyang 110000 , China

2. School of Public Health, Fudan University , Shanghai 200000 , China

3. Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command , Shenyang 110000 , China

Abstract

Abstract Recurrent spontaneous abortion is thought to be mostly triggered by immune-related causes. Mesenchymal stem cells, which exhibit the traits of multi-directional differentiation capacity and low immunogenicity, have recently been recommended as a viable treatment for spontaneous abortion-prone mice to increase the success of pregnancy. Amniotic membrane tissue is a byproduct of pregnancy and delivery that has a wide range of potential uses due to its easy access to raw materials and little ethical constraints. To construct an abortion-prone mouse model for this investigation, CBA/J female mice were coupled with male DBA/2 mice, while CBA/J female mice were paired with male BALB/c mice as a control. The identical volume of human amniotic mesenchymal stem cells or phosphate buffer was injected intraperitoneally on the 4.5th day of pregnancy. CBA/J female mice were sacrificed by cervical dislocation on the 13.5th day of pregnancy, the embryo absorption rate was calculated, and the uterus, decidua tissues and placenta were gathered for examination. Through detection, it was discovered that human amniotic mesenchymal stem cells significantly increased the expression of interleukin 10 and transforming growth factor beta, while they significantly decreased the expression of interleukin 1 beta and interleukin 6, improved vascular formation and angiogenesis, and minimized the embryo absorption rate and inflammatory cell infiltration in the recurrent spontaneous abortion + human amniotic mesenchymal stem cells group. In any case, human amniotic mesenchymal stem cells regulate inflammatory factors and cell balance at the maternal–fetal interface, which result in a reduction in the rate of embryo absorption and inflammatory infiltration and provide an innovative perspective to the clinical therapy of recurrent spontaneous abortion.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3