Cervical immune activation during the luteal phase may compromise subsequent trans-cervical ram sperm transport

Author:

Abril-Parreño Laura1,Krogenæs Anette Kristine2,Druart Xavier3,Cormican Paul4,Fair Sean1,Meade Kieran G5

Affiliation:

1. Laboratory of Animal Reproduction , Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland

2. Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway

3. UMR-PRC , INRA-85, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France

4. Animal and Bioscience Research Department , Animal and Grassland Research and Innovation Centre, Grange, Ireland

5. School of Agriculture and Food Science , University College Dublin, Dublin 4, Ireland

Abstract

Abstract Worldwide, cervical artificial insemination using frozen–thawed semen yields low pregnancy rates. The only exception to this is in Norway, where vaginal insemination with frozen–thawed semen yields pregnancy rates in excess of 60% and which has been attributed to the specific ewe breed used. Our previous work demonstrated differences in cervical gene expression at the follicular phase of the estrous cycle in ewe breeds with known differences in pregnancy rates. In this study, we characterized the cervical transcriptome of the same ewe breeds [Suffolk, Belclare, Fur, and Norwegian White Sheep (NWS)] during the luteal phase, as an optimal environment at the luteal phase could better prepare the cervix for sperm migration through the cervix at the subsequent follicular phase. High-quality RNA extracted from postmortem cervical tissue was analyzed by RNA sequencing. After stringent filtering, 1051, 1924, and 611 differentially expressed genes (DEGs) were detected in the low-fertility Suffolk breed compared with Belclare, Fur, and NWS, respectively. Gene ontology analysis identified increased humoral adaptive immune response pathways in Suffolk. Increased expression of multiple immune genes supports the presence of an active immune response in the cervix of Suffolk ewes, which differentiates them significantly from the other three ewe breeds. Inflammatory pathways were upregulated in the Suffolk, resulting in higher expression of the potent pro-inflammatory cytokines. Therefore, higher levels of pro-inflammatory cytokines indicate unresolved inflammation in the cervix of the low-fertility Suffolk breed that could contribute to reduced cervical sperm transport in the next follicular phase.

Funder

Research Council of Norway

Teagasc

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3