HIF-1α is essential for the augmentation of myometrial contractility during labor

Author:

Wen Bolun1,Zheng Zheng1,Wang Lele1,Qian Xueya1,Wang Xiaodi1,Chen Yunshan1,Bao Junjie1,Jiang Yanmin1,Ji Kaiyuan1,Liu Huishu1

Affiliation:

1. Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University , Guangzhou, China

Abstract

Abstract Uterine contraction is crucial for a successful labor and the prevention of postpartum hemorrhage. It is enhanced by hypoxia; however, its underlying mechanisms are yet to be elucidated. In this study, transcriptomes revealed that hypoxia-inducible factor-1alpha was upregulated in laboring myometrial biopsies, while blockade of hypoxia-inducible factor-1alpha decreased the contractility of the myometrium and myocytes in vitro via small interfering RNA and the inhibitor, 2-methoxyestradiol. Chromatin immunoprecipitation sequencing revealed that hypoxia-inducible factor-1alpha directly binds to the genome of contraction-associated proteins: the promoter of Gja1 and Ptgs2, and the intron of Oxtr. Silencing the hypoxia-inducible factor-1alpha reduced the expression of Ptgs2, Gja1, and Oxtr. Furthermore, blockade of Gja1 or Ptgs2 led to a significant decrease in myometrial contractions in the hypoxic tissue model, whereas atosiban did not remarkably influence contractility. Our study demonstrates that hypoxia-inducible factor-1alpha is essential for promoting myometrial contractility under hypoxia by directly targeting Gja1 and Ptgs2, but not Oxtr. These findings help us to better understand the regulation of myometrial contractions under hypoxia and provide a promising strategy for labor management and postpartum hemorrhage treatment.

Funder

Department of Science and Technology of Guangdong Province

High-tech Major Featured Technology Program of Guangzhou Municipal Health Commission

Guangzhou Municipal Science and Technology Bureau

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3