Conditional Superior Predictive Ability

Author:

Li Jia1,Liao Zhipeng2,Quaedvlieg Rogier3

Affiliation:

1. Duke University and Singapore Management University

2. Department of Economics, UCLA, Log Angeles

3. Erasmus School of Economics

Abstract

Abstract This article proposes a test for the conditional superior predictive ability (CSPA) of a family of forecasting methods with respect to a benchmark. The test is functional in nature: under the null hypothesis, the benchmark’s conditional expected loss is no more than those of the competitors, uniformly across all conditioning states. By inverting the CSPA tests for a set of benchmarks, we obtain confidence sets for the uniformly most superior method. The econometric inference pertains to testing conditional moment inequalities for time series data with general serial dependence, and we justify its asymptotic validity using a uniform non-parametric inference method based on a new strong approximation theory for mixingales. The usefulness of the method is demonstrated in empirical applications on volatility and inflation forecasting.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference47 articles.

1. Modeling and Forecasting Realized Volatility;ANDERSEN,;Econometrica,2003

2. Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models;ANDREWS,;Econometrica,1991

3. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation;ANDREWS,;Econometrica,1991

4. An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator;ANDREWS,;Econometrica,1992

5. Are Phillips Curves Useful for Forecasting Inflation?;ATKESON,;Federal Reserve bank of Minneapolis Quarterly Review,2001

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3