On the Iterated Estimation of Dynamic Discrete Choice Games

Author:

Bugni Federico A1,Bunting Jackson1

Affiliation:

1. Duke University

Abstract

Abstract We study the first-order asymptotic properties of a class of estimators of the structural parameters in dynamic discrete choice games. We consider $K$-stage policy iteration (PI) estimators, where $K$ denotes the number of PIs employed in the estimation. This class nests several estimators proposed in the literature. By considering a “pseudo likelihood” criterion function, our estimator becomes the $K$-pseudo maximum likelihood (PML) estimator in Aguirregabiria and Mira (2002, 2007). By considering a “minimum distance” criterion function, it defines a new $K$-minimum distance (MD) estimator, which is an iterative version of the estimators in Pesendorfer and Schmidt-Dengler (2008) and Pakes et al. (2007). First, we establish that the $K$-PML estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. This complements findings in Aguirregabiria and Mira (2007), who focus on $K=1$ and $K$ large enough to induce convergence of the estimator. Furthermore, we show under certain conditions that the asymptotic variance of the $K$-PML estimator can exhibit arbitrary patterns as a function of $K$. Second, we establish that the $K$-MD estimator is consistent and asymptotically normal for any $K \in \mathbb{N}$. For a specific weight matrix, the $K$-MD estimator has the same asymptotic distribution as the $K$-PML estimator. Our main result provides an optimal sequence of weight matrices for the $K$-MD estimator and shows that the optimally weighted $K$-MD estimator has an asymptotic distribution that is invariant to $K$. The invariance result is especially unexpected given the findings in Aguirregabiria and Mira (2007) for $K$-PML estimators. Our main result implies two new corollaries about the optimal $1$-MD estimator (derived by Pesendorfer and Schmidt-Dengler (2008)). First, the optimal $1$-MD estimator is efficient in the class of $K$-MD estimators for all $K \in \mathbb{N}$. In other words, additional PIs do not provide first-order efficiency gains relative to the optimal $1$-MD estimator. Second, the optimal $1$-MD estimator is more or equally efficient than any $K$-PML estimator for all $K \in \mathbb{N}$. Finally, the Appendix provides appropriate conditions under which the optimal $1$-MD estimator is efficient among regular estimators.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference19 articles.

1. Pseudo maximum likelihood estimation of structural models involving fixed-point problems;AGUIRREGABIRIA,;Economics Letters,2004

2. Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models,;AGUIRREGABIRIA,;Econometrica,2002

3. Sequential Estimation of Dynamic Discrete Games,;AGUIRREGABIRIA,;Econometrica,2007

4. Small-sample bias in GMM estimation of covariance structures,;ALTONJI,;Journal of Business & Economics Statistics,1996

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3