Informational Robustness in Intertemporal Pricing

Author:

Libgober Jonathan1,Mu Xiaosheng2

Affiliation:

1. University of Southern California

2. Princeton University

Abstract

Abstract We introduce a robust approach to study dynamic monopoly pricing of a durable good in the face of buyer learning. A buyer receives information about her willingness-to-pay for the seller’s product over time, and decides when to make a one-time purchase. The seller does not know how the buyer learns but commits to a pricing strategy to maximize profits against the worst-case information arrival process. We show that a constant price path delivers the robustly optimal profit, with profit and price both lower than under known values. Thus, under the robust objective, intertemporal incentives do not arise at the optimum, despite the possibility for information arrival to influence the timing of purchases. We delineate whether constant prices remain optimal (or not) when the seller seeks robustness against a subset of information arrival processes. As part of the analysis, we develop new techniques to study dynamic Bayesian persuasion.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference47 articles.

1. Political Disagreement and Information in Elections;ALONSO,;Games and Economic Behavior,2016

2. First-price Auctions with General Information Structures: Implications for Bidding and Revenue;BERGEMANN,;Econometrica,2017

3. Robust Monopoly Pricing;BERGEMANN,;Journal of Economic Theory,2011

4. Sequential Information Disclosure in Auctions;BERGEMANN,;Journal of Economic Theory,2015

5. Equivalent Comparison of Experiments;BLACKWELL,;The Annals of Mathematical Statistics,1953

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting Surplus by Walking Away From Acquiring Information;SSRN Electronic Journal;2023

2. Robust Pricing under Ambiguity;SSRN Electronic Journal;2023

3. Buyer-Optimal Algorithmic Consumption;SSRN Electronic Journal;2023

4. Buyer-Optimal Algorithmic Consumption;SSRN Electronic Journal;2023

5. Robustly Optimal Auction Design under Mean Constraints;Proceedings of the 23rd ACM Conference on Economics and Computation;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3