3D printing of cell-delivery scaffolds for tissue regeneration

Author:

Xue Jianmin1,Qin Chen1,Wu Chengtie12

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People’s Republic of China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China

Abstract

Abstract Tissue engineering strategy that combine biomaterials with living cells has shown special advantages in tissue regeneration and promoted the development of regenerative medicine. In particular, the rising of 3D printing technology further enriched the structural design and composition of tissue engineering scaffolds, which also provided convenience for cell loading and cell delivery of living cells. In this review, two types of cell-delivery scaffolds for tissue regeneration, including 3D printed scaffolds with subsequent cell-seeding and 3D cells bioprinted scaffolds, are mainly reviewed. We devote a major part to present and discuss the recent advances of two 3D printed cell-delivery scaffolds in regeneration of various tissues, involving bone, cartilage, skin tissues etc. Although two types of 3D printed cell-delivery scaffolds have some shortcomings, they do have generally facilitated the exploration of tissue engineering scaffolds in multiple tissue regeneration. It is expected that 3D printed cell-delivery scaffolds will be further explored in function mechanism of seeding cells in vivo, precise mimicking of complex tissues and even organ reconstruction under the cooperation of multiple fields in future.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3