A CS-based composite scaffold with excellent photothermal effect and its application in full-thickness skin wound healing

Author:

Wang Jing1,Fu Shijia1,Li Huishan1,Wu Yue1

Affiliation:

1. School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China

Abstract

Abstract The development of natural polymer-based scaffolds with excellent biocompatibility, antibacterial activity, and blood compatibility, able to facilitate full-thickness skin wound healing, remains challenging. In this study, we have developed three chitosan (CS)-based porous scaffolds, including CS, CS/CNT (carbon nanotubes) and CS/CNT/HA (nano-hydroxyapatite, n-HA) using a freeze-drying method. All three scaffolds have a high swelling ratio, excellent antibacterial activity, outstanding cytocompatibility and blood compatibility in vitro. The introduction of CNTs exhibited an obvious increase in mechanical properties and exerts excellent photothermal response, which displays excellent healing performance as a wound dressing in mouse full-thickness skin wound model when compared to CS scaffolds. CS/CNT/HA composite scaffolds present the strongest ability to promote full-thickness cutaneous wound closure and skin regeneration, which might be ascribed to the synergistic effect of photothermal response from CNT and excellent bioactivity from n-HA. Overall, the present study indicated that CNT and n-HA can be engineered as effective constituents in wound dressings to facilitate full-thickness skin regeneration.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3