Relationship between mechanical load and surface erosion degradation of a shape memory elastomer poly(glycerol-dodecanoate) for soft tissue implant

Author:

Jin Kaixiang1ORCID,Li Hanqin1,Liang Mingkai1,Li Yuqi1,Wang Lizhen12,Fan Yubo12

Affiliation:

1. Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University , Beijing 100083, China

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University , Beijing 100083, China

Abstract

Abstract Poly(glycerol-dodecanoate) (PGD) has aroused increasing attention in biomedical engineering for its degradability, shape memory and rubber-like mechanical properties, giving it potential to fabricate intelligent implants for soft tissues. Adjustable degradation is important for biodegradable implants and is affected by various factors. The mechanical load has been shown to play an important role in regulating polymer degradation in vivo. An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation, further guiding to regulate degradation behavior of soft tissue implants made by PGD. In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations. Based on the equations, a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis, which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes, stress distribution during degradation and optimization of the loaded drug release.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3