Unveiling protein corona composition: predicting with resampling embedding and machine learning

Author:

Liao Rong1,Zhuang Yan1,Li Xiangfeng1,Chen Ke1,Wang Xingming1,Feng Cong1,Yin Guangfu1,Zhu Xiangdong1,Lin Jiangli1,Zhang Xingdong1

Affiliation:

1. College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China

Abstract

Abstract Biomaterials with surface nanostructures effectively enhance protein secretion and stimulate tissue regeneration. When nanoparticles (NPs) enter the living system, they quickly interact with proteins in the body fluid, forming the protein corona (PC). The accurate prediction of the PC composition is critical for analyzing the osteoinductivity of biomaterials and guiding the reverse design of NPs. However, achieving accurate predictions remains a significant challenge. Although several machine learning (ML) models like Random Forest (RF) have been used for PC prediction, they often fail to consider the extreme values in the abundance region of PC absorption and struggle to improve accuracy due to the imbalanced data distribution. In this study, resampling embedding was introduced to resolve the issue of imbalanced distribution in PC data. Various ML models were evaluated, and RF model was finally used for prediction, and good correlation coefficient (R2) and root-mean-square deviation (RMSE) values were obtained. Our ablation experiments demonstrated that the proposed method achieved an R2 of 0.68, indicating an improvement of approximately 10%, and an RMSE of 0.90, representing a reduction of approximately 10%. Furthermore, through the verification of label-free quantification of four NPs: hydroxyapatite (HA), titanium dioxide (TiO2), silicon dioxide (SiO2) and silver (Ag), and we achieved a prediction performance with an R2 value >0.70 using Random Oversampling. Additionally, the feature analysis revealed that the composition of the PC is most significantly influenced by the incubation plasma concentration, PDI and surface modification.

Funder

National Key Research and Development Program of China

Major Project of Sichuan Science and Technology Department

Miaozi Project of Sichuan Science and Technology Department

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3