Multiplexing Homocysteine into First-Tier Newborn Screening Mass Spectrometry Assays Using Selective Thiol Derivatization

Author:

Pickens C Austin1,Courtney Elya1,Isenberg Samantha L1,Cuthbert Carla1,Petritis Konstantinos1ORCID

Affiliation:

1. Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, GA , United States

Abstract

Abstract Background Classical homocystinuria (HCU) results from deficient cystathionine β-synthase activity, causing elevated levels of Met and homocysteine (Hcy). Newborn screening (NBS) aims to identify HCU in pre-symptomatic newborns by assessing Met concentrations in first-tier screening. However, unlike Hcy, Met testing leads to a high number of false-positive and -negative results. Therefore, screening for Hcy directly in first-tier screening would be a better biomarker for use in NBS. Methods Dried blood spot (DBS) quality control and residual clinical specimens were used in analyses. Several reducing and maleimide reagents were investigated to aid in quantification of total Hcy (tHcy). The assay which was developed and validated was performed by flow injection analysis–tandem mass spectrometry (FIA-MS/MS). Results Interferents of tHcy measurement were identified, so selective derivatization of Hcy was employed. Using N-ethylmaleimide (NEM) to selectively derivatize Hcy allowed interferent-free quantification of tHcy by FIA-MS/MS in first-tier NBS. The combination of tris(2-carboxyethyl)phosphine (TCEP) and NEM yielded significantly less matrix effects compared to dithiothreitol (DTT) and NEM. Analysis of clinical specimens demonstrated that the method could distinguish between HCU-positive, presumptive normal newborns, and newborns receiving total parenteral nutrition. Conclusions Here we present the first known validated method capable of screening tHcy in DBS during FIA-MS/S first-tier NBS.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3