Affiliation:
1. Department of Surgery, University of Utah, Salt Lake City 84132
Abstract
Abstract
As in the opening of frontiers on Earth, human physiological maladaptation, illness, and injury--rather than defective transportation systems--are likely to be the pace-limiting variables in efforts to expand the presence of humans into the solar system. Because of the inability of individuals to return to Earth rapidly and conveniently, the capability of delivering medical care on site will be key to the success of a manned space station, lunar base, and Mars mission. Spaceflight medical care equipment must meet stringent constraints of size, weight, and power requirements, and then must function accurately in remote, self-contained, microgravity settings after extended intervals of storage, with neither expert operators nor repair technicians on site. Satisfying these unusually rigorous requirements will require sustained direct involvement of clinically up-to-date health-care providers, medical scientists, and biomedical engineers, as well as astronauts and aerospace engineers and managers. Solutions will require validation in clinical settings with real patients, as well as in simulated operational settings.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献