Diagnostic miRNA Signatures in Paired Tumor, Plasma, and Urine Specimens From Renal Cell Carcinoma Patients

Author:

Bustos Matias A1,Gottlieb Josh2,Choe Jane2,Suyeon Ryu3,Lin Selena Y4,Allen Warren M5,Krasne David L5,Wilson Timothy G2,Hoon Dave S B13,Linehan Jennifer A2

Affiliation:

1. Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center , Santa Monica, CA , United States

2. Department of Urologic Oncology, Saint John’s Cancer Institute, Providence Saint John’s Health Center , Santa Monica, CA , United States

3. Department of Genomic Sequencing Center, Saint John’s Cancer Institute, Providence Saint John’s Health Center , Santa Monica, CA , United States

4. JBS Science Inc. , Doylestown, PA , United States

5. Department of Surgical Pathology, Saint John’s Cancer Institute, Providence Saint John’s Health Center , Santa Monica, CA , United States

Abstract

Abstract Background The incidence of patients diagnosed with renal cell carcinoma (RCC) is increasing. There are no approved biofluid biomarkers for routine diagnosis of RCC patients. This retrospective study aims to identify cell-free microRNA (cfmiR) signatures in urine samples that can be utilized as biomarkers for early diagnosis of sporadic RCC patients. Methods Tissue, plasma, and urine samples (n = 221) from 56 sporadic RCC patients and respective normal healthy donors were profiled for 2083 microRNAs (miRs) using the next-generation sequencing-based HTG EdgeSeq miR Whole Transcriptome Assay. DESeq2 (FC |1.2|, false discovery rate <0.05) was performed to identify differentially expressed miRs. Data from RCC tissue samples of The Cancer Genome Atlas database were used for miR validation. Results We found a 10-miR signature that distinguished RCC tissues from remote normal kidney tissue or benign kidney lesion samples. Additionally, we identified subtype-specific miRs (miR-122-5p, miR-210-3p, and miR-21-3p) and miRs specific for all RCC subtypes (miR-106b-3p, miR-629-5p, and miR-885-5p). We observed that miR-155-5p was associated with tumor size. Using The Cancer Genome Atlas data sets, we validated the miRs found in RCC tissue samples. In plasma or urine analysis, we found cfmiRs that were consistently and significantly upregulated in RCC tissue samples. A 15-cfmiR signature was proposed in urine samples of RCC patients, of which miR-1275 was consistently upregulated in tissue, plasma, and urine samples. Conclusions This integrative study found diagnostic miRs/cfmiRs for RCC patients, which were validated using The Cancer Genome Atlas data sets. Distinctive cfmiR signatures found in urine may have clinical utility for the diagnosis of RCC.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3