Author:
Fogh-Andersen N,Wimberley P D,Thode J,Siggaard-Andersen O
Abstract
Abstract
We compared different sample-handling techniques for measurement of Na+ and K+ with ion-selective electrodes (ISE). Imprecision was less for venous blood (with a minimum of heparin) than for plasma, serum, or capillary blood. The results for K+ were higher for serum than for whole blood, and higher for whole blood than for plasma. The latter difference was apparently due to release of K+ during the analysis. Values were more stable for whole blood stored at 20 degrees C than at 4 degrees C or 37 degrees C. The molality of Na+ in the plasma of mixed whole blood changed by -10.5 mmol/kg per unit change in blood pH. This could be explained by the different H+ buffering capacities of plasma and erythrocyte fluid, because when the pH is changed, the concentration of small anions in erythrocytes changes more than it does in plasma, with a consequent osmotic movement of water across the erythrocyte membrane. When we took into account the residual liquid-junction potential and the mass concentration of water in each of 65 patients' sera, the molality determined for Na+ was 1% lower and that of K+ 3% lower by ISE than by flame photometry--differences that may be related to ionic binding or to a lower molal activity coefficient in serum than in the calibrator.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry, medical,Clinical Biochemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献