Analytical Performance Specifications for Input Variables: Investigation of the Model of End-Stage Liver Disease

Author:

Andersen Eline S12ORCID,Röttger Richard3,Brasen Claus L12,Brandslund Ivan12ORCID

Affiliation:

1. Department of Biochemistry and Immunology, Lillebaelt Hospital , Vejle , Denmark

2. Department of Regional Health Research, University of Southern Denmark , Odense , Denmark

3. Department of Mathematics and Computer Science, University of Southern Denmark , Odense , Denmark

Abstract

Abstract Background Artificial intelligence models constitute specific uses of analysis results and, therefore, necessitate evaluation of analytical performance specifications (APS) for this context specifically. The Model of End-stage Liver Disease (MELD) is a clinical prediction model based on measurements of bilirubin, creatinine, and the international normalized ratio (INR). This study evaluates the propagation of error through the MELD, to inform choice of APS for the MELD input variables. Methods A total of 6093 consecutive MELD scores and underlying analysis results were retrospectively collected. “Desirable analytical variation” based on biological variation as well as current local analytical variation was simulated onto the data set as well as onto a constructed data set, representing a worst-case scenario. Resulting changes in MELD score and risk classification were calculated. Results Biological variation-based APS in the worst-case scenario resulted in 3.26% of scores changing by ≥1 MELD point. In the patient-derived data set, the same variation resulted in 0.92% of samples changing by ≥1 MELD point, and 5.5% of samples changing risk category. Local analytical performance resulted in lower reclassification rates. Conclusions Error propagation through MELD is complex and includes population-dependent mechanisms. Biological variation-derived APS were acceptable for all uses of the MELD score. Other combinations of APS can yield equally acceptable results. This analysis exemplifies how error propagation through artificial intelligence models can become highly complex. This complexity will necessitate that both model suppliers and clinical laboratories address analytical performance specifications for the specific use case, as these may differ from performance specifications for traditional use of the analyses.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3