Affiliation:
1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People’s Republic of China
Abstract
Abstract
Background: Capillary electrophoresis (CE) with tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+]-electrogenerated chemiluminescence (ECL) detection is a promising method for clinical analysis. In this study, a method combining CE with Ru(bpy)32+ ECL (CE-ECL) detection that can be applied to amine-containing clinical species was developed, and the performance of CE-ECL as a quantitative method for determination of sulpiride in human plasma or urine was evaluated.
Methods: Sulpiride was separated by capillary zone electrophoresis in uncoated fused-silica capillaries [50 cm × 25 μm (i.d.)] filled with phosphate buffer (pH 8.0) and a driving voltage of +15 kV, with end-column Ru(bpy)32+ ECL detection. A platinum disc electrode was used as working electrode. Sulpiride in human plasma or urine samples (100 μL) was extracted by a double-step liquid-liquid extraction procedure, dried under nitrogen at 35 °C in a water bath, and reconstituted with 100 μL of filtered water. The extraction solvent was ethyl acetate–dichloromethane (5:1 by volume).
Results: Under optimum conditions (pH 8.0 phosphate buffer, injection for 6 s at 10 kV, and +1.2 V as detection potential), separation of sulpiride was accomplished within 4 min. The calibration curve was linear over a concentration range of 0.05–25.0 μmol/L, and the limit of detection was 2.9 × 10−8 mol/L for sulpiride. Intra- and interday CVs for ECL intensities were <6%. Extraction recoveries of sulpiride were 95.6–101% with CVs of 2.9–6.0%. The method was clinically validated for patient plasma and urine samples.
Conclusions: CE combined with Ru(bpy)32+ ECL is reproducible, precise, selective, and enables the analysis of sulpiride in human plasma and urine. It thus is of value for rapid and efficient analysis of amine-containing analytes of clinical interest.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献