Utilizing Mass Spectrometry to Detect and Isotype Monoclonal Proteins in Urine: Comparison to Electrophoretic Methods

Author:

Moonen Danelle H1,Kohlhagen Mindy1,Dasari Surendra1,Willrich Maria A1ORCID,Kourelis Taxiarchis1,Dispenzieri Angela1,Murray David L1ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN , United States

Abstract

Abstract Background Matrix assisted laser desorption ionization time of flight mass spectrometry coupled to immune enrichment (MASS-FIX) as an alternative to serum immunofixation electrophoresis has demonstrated increased sensitivity in monoclonal protein (MP) detection with improved laboratory workflow. This study explored similar replacement of urine immunofixation electrophoresis (u-IFE) with urine MASS-FIX (u-MASS-FIX) by method comparison. Methods Residual urine (n = 1008) from Mayo Clinic patients with a known plasma cell disease were assayed neat by u-MASS-FIX analysis. Each sample was paired with the following: u-IFE, urine total protein, urine protein electrophoresis, serum κ/λ free light chain (LC) ratio (rFLC), and serum MASS-FIX (s-MASS-FIX). Analytical sensitivities were measured in pooled urine spiked with daratumumab. Results u-IFE and u-MASS-FIX had 91% agreement in determining the presence/absence of MPs (Cohen kappa = 0.8200). In discrepant cases, serum rFLC statistically aligned more closely with positive u-MASS-FIX cases than u-IFE. Patients positive by both s-MASS-FIX and u-MASS-FIX had matching MP masses (±20 daltons) in 94% of cases. The u-MASS-FIX spectra further identified κ/λ LC fragments and glycosylated LCs not appreciated on u-IFE. The unconcentrated u-MASS-FIX limit of detection of 0.156 mg/mL was determined equivalent to 100× concentrated u-IFE. Conclusion u-MASS-FIX is a reliable alternative to u-IFE with the added benefits of LC glycosylation detection and MP mass tracking between serum and urine. Furthermore, u-MASS-FIX is performed using neat urine. Eliminating the need to concentrate urine for u-IFE has potential to increase productivity by decreasing labor minutes per test.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3