Real-Time Reverse Transcription-PCR Assay for Future Management of ERBB2-based Clinical Applications

Author:

Bièche Ivan12,Onody Peter2,Laurendeau Ingrid1,Olivi Martine1,Vidaud Dominique1,Lidereau Rosette2,Vidaud Michel1

Affiliation:

1. Laboratoire de Génétique Moléculaire, Faculté des Sciences Pharmaceutiques et Biologiques de Paris, 4 Avenue de l’Observatoire, F-75006 Paris, France

2. Laboratoire d’Oncogénétique, Centre René Huguenin, F-92211 St-Cloud, France

Abstract

Abstract Background: Gene amplification/overexpression of ERBB2 (HER2, neu) is a major event in human breast tumorigenesis. ERBB2-based therapeutic agents and ERBB2-specific gene therapy are under development. These new perspectives call for a sensitive and accurate method to screen breast cancer patients for ERBB2 alterations. Methods: We have developed and validated a real-time quantitative reverse transcription (RT)-PCR assay, based on fluorescent TaqMan methodology, to quantify ERBB2 gene expression at the mRNA level in breast tumors. This recently developed method of nucleic acid quantification in homogeneous solutions has the potential for a wide dynamic range, interlaboratory agreement, and high-throughput capacity without tedious post-PCR processing. The ERBB2 mRNA signal was normalized to the signal for TATA box-binding protein mRNA. Results: The dynamic range was >1000-fold. The relationship between Ct and log starting concentration was linear (r2 ≥0.99). The mean (SD) normalized expression of ERBB2 in healthy breast tissue was 0.95 (0.37). Overexpression (>5 SD above mean for healthy breast) of the ERBB2 gene was observed (at 3.2- to 135-fold) in 23 (17%) of 134 breast tumor RNA samples. As expected, ERBB2 overexpression was present in all tumors with ERBB2 gene amplification but was uncommon and at a low ratio (<5) in breast cancers without gene amplification. Conclusions: This new simple, rapid, semi-automated assay is a major alternative to fluorescence in situ hybridization and immunochemistry for gene alteration analysis in human tumors and may be a powerful tool for large randomized, prospective cooperative group trials and to support future ERBB2-based biological and gene therapy approaches.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3