Biological Role of Magnesium

Author:

Pleshchitser A La1

Affiliation:

1. Uspekhi Sovremennoľ Biologii (Advances in Contemporary Biology) XL, 1(4), 52-67 (1955)

Abstract

Abstract Fersman (1934) commented on the relatively unimportant role of magnesium in biochemical processes. The comparatively limited radius of its ions, the stability and relative insolubility of its compounds prevent its taking an active part in the reactions of living matter. On the other hand, we have the statement of Vernadskii that in the plankton film of the ocean, in the ordinary accumulations and more massive growths, the amount of magnesium-containing chlorophyll must reach the order of 10-4 per cent by weight, if not higher, so that a small quantity of magnesium, entering into the composition of the chlorophyll-complex of the plankton, ultimately regulates the main part of the oxygenating function of living matter, the creation of free atmospheric oxygen. The material summarized by us likewise affords evidence of the importance of the role of magnesium in biological processes. All this, however, does not justify sharp differentiation between the biological role of magnesium and its role in biochemical processes. In all probability these processes are conditional to each other, although they are not identical processes. It is important to note the established and incontestable role of magnesium in many enzymatic processes in both the plant and animal kingdoms. The antagonistic action between magnesium and calcium, resulting from artificial changes in the ratios of these elements in soil, plants, and animals, can hardly occur under natural conditions, and, conversely, it must be assumed that a labile equilibrium between these elements is always maintained. The depressing action of magnesium ions on the central nervous system acquires considerable biological significance, since this permits the assumption that these ions in the animal organism may facilitate inhibitory processes in the nerve cell and insure the normal course of catabolic and anabolic processes. The narcotic and cholinolytic effects of magnesium constitute the basis for the wide therapeutic use of magnesium salts in medical practice.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3