Determination of S-Adenosylmethionine and S-Adenosylhomocysteine in Plasma and Cerebrospinal Fluid by Stable-Isotope Dilution Tandem Mass Spectrometry

Author:

Struys Eduard A1,Jansen Erwin E W1,de Meer Kees1,Jakobs Cornelis1

Affiliation:

1. Metabolic Unit, Department of Clinical Chemistry, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands

Abstract

AbstractBackground: Available methods for the determination of nanomolar concentrations of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma and cerebrospinal fluid (CSF) are time-consuming. We wished to develop a method for their rapid and simultaneous measurement.Methods: We used tandem mass spectrometry (MS/MS) for the simultaneous determination of SAM and SAH, with stable-isotope-labeled internal standards. The 13C5-SAH internal standard was enzymatically prepared using SAH-hydrolase and [13C5]adenosine. The method comprises a weak anion-exchange solid-phase extraction procedure serving as clean-up step for the deproteinized plasma and CSF samples. After clean-up, samples were injected on a C18 HPLC column, which was connected directly to the tandem mass spectrometer, operating in MS/MS mode.Results: In plasma samples, the intraassay CVs for SAM and SAH were 4.2% and 4.0%, respectively, and the interassay CVs were 7.6% and 5.9%, respectively. In CSF, the intraassay CVs for SAM and SAH were 6.8% and 6.9%, respectively, and the interassay CVs were 4.2% and 5.5%, respectively. Mean recovery of SAM and SAH for both matrices at two concentrations was 93%. Detection limits for SAM and SAH in samples were 7.5 and 2.5 nmol/L, respectively. Concentrations of SAM and SAH in plasma from healthy subjects were within the previously reported ranges. In 10 CSF samples, the mean concentrations (range) were 248 (137–385) nmol/L for SAM and 11.3 (8.9–14.1) nmol/L for SAH.Conclusions: SAM and SAH can be analyzed by MS/MS, taking optimal advantage of the speed and high sensitivity and specificity of this relatively new analytical technique.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3