Automating the Detection of IV Fluid Contamination Using Unsupervised Machine Learning

Author:

Spies Nicholas C1ORCID,Hubler Zita1ORCID,Azimi Vahid1ORCID,Zhang Ray2ORCID,Jackups Ronald1,Gronowski Ann M1,Farnsworth Christopher W1ORCID,Zaydman Mark A1

Affiliation:

1. Department of Pathology, Washington University in St.Louis School of Medicine , St. Louis, MO , United States

2. Department of Pathology, University of Texas Southwestern Medical Center , Dallas, TX , United States

Abstract

Abstract Background Intravenous (IV) fluid contamination is a common cause of preanalytical error that can delay or misguide treatment decisions, leading to patient harm. Current approaches for detecting contamination rely on delta checks, which require a prior result, or manual technologist intervention, which is inefficient and vulnerable to human error. Supervised machine learning may provide a means to detect contamination, but its implementation is hindered by its reliance on expert-labeled training data. An automated approach that is accurate, reproducible, and practical is needed. Methods A total of 25 747 291 basic metabolic panel (BMP) results from 312 721 patients were obtained from the laboratory information system (LIS). A Uniform Manifold Approximation and Projection (UMAP) model was trained and tested using a combination of real patient data and simulated IV fluid contamination. To provide an objective metric for classification, an “enrichment score” was derived and its performance assessed. Our current workflow was compared to UMAP predictions using expert chart review. Results UMAP embeddings from real patient results demonstrated outliers suspicious for IV fluid contamination when compared with the simulated contamination's embeddings. At a flag rate of 3 per 1000 results, the positive predictive value (PPV) was adjudicated to be 0.78 from 100 consecutive positive predictions. Of these, 58 were previously undetected by our current clinical workflows, with 49 BMPs displaying a total of 56 critical results. Conclusions Accurate and automatable detection of IV fluid contamination in BMP results is achievable without curating expertly labeled training data.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Reference19 articles.

1. The global burden of diagnostic errors in primary care;Singh;BMJ Qual Saf,2017

2. Harnessing event report data to identify diagnostic error during the COVID-19 pandemic;Shen;Jt Comm J Qual Patient Saf,2022

3. Errors in a stat laboratory: types and frequencies 10 years later;Carraro;Clin Chem,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3