Affiliation:
1. Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104. Fax 215-662-7529; e-mail larry_kricka@path1a.med.upenn.edu.
Abstract
Abstract
Purpose: The scope and significance of human anti-animal antibody interference in immunological assays is reviewed with an emphasis on human anti-animal immunoglobulins, particularly human anti-mouse antibodies (HAMAs).
Issues: Anti-animal antibodies (IgG, IgA, IgM, IgE class, anti-isotype, and anti-idiotype specificity) arise as a result of iatrogenic and noniatrogenic causes and include human anti-mouse, -rabbit, -goat, -sheep, -cow, -pig, -rat, and -horse antibodies and antibodies with mixed specificity. Circulating antibodies can reach gram per liter concentrations and may persist for years. Prevalence estimates for anti-animal antibodies in the general population vary widely and range from <1% to 80%. Human anti-animal antibodies cause interferences in immunological assays. The most common human anti-animal antibody interferent is HAMA, which causes both positive and negative interferences in two-site mouse monoclonal antibody-based assays. Strategies to prevent the development of human anti-animal antibody responses include immunosuppressant therapy and the use of humanized, polyethylene glycolylated, or Fab fragments of antibody agents. Sample pretreatment or assay redesign can eliminate immunoassay interferences caused by anti-animal antibodies. Enzyme immunoassays, immunoradiometric assays, immunofluorescence, and HPLC assays have been designed to detect HAMA and other anti-animal antibodies, but intermethod comparability is complicated by differences in assay specificity and lack of standardization.
Conclusions: Human anti-animal antibodies often go unnoticed, to the detriment of patient care. A heightened awareness on the part of laboratory staff and clinicians of the problems caused by this type of interference in routine immunoassay tests is desirable. Efforts should be directed at improving methods for identifying and eliminating this type of analytical interference.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
432 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献