Abstract
Abstract
The least-squares method is frequently used to calculate the slope and intercept of the best line through a set of data points. However, least-squares regression slopes and intercepts may be incorrect if the underlying assumptions of the least-squares model are not met. Two factors in particular that may result in incorrect least-squares regression coefficients are: (a) imprecision in the measurement of the independent (x-axis) variable and (b) inclusion of outliers in the data analysis. We compared the methods of Deming, Mandel, and Bartlett in estimating the known slope of a regression line when the independent variable is measured with imprecision, and found the method of Deming to be the most useful. Significant error in the least-squares slope estimation occurs when the ratio of the standard deviation of measurement of a single x value to the standard deviation of the x-data set exceeds 0.2. Errors in the least-squares coefficients attributable to outliers can be avoided by eliminating data points whose vertical distance from the regression line exceed four times the standard error the estimate.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
419 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献