Dynamic Relation between Reduced, Oxidized, and Protein-Bound Homocysteine and Other Thiol Components in Plasma During Methionine Loading in Healthy Men

Author:

Mansoor M A1,Svardal A M1,Schneede J1,Ueland P M1

Affiliation:

1. Department of Pharmacology and Toxicology, University of Bergen, Haukeland Hospital, Norway

Abstract

Abstract We used a newly developed procedure to determine reduced, oxidized, and protein-bound forms of homocysteine, cysteine, cysteinylglycine, and glutathione to measure the plasma concentrations of these species during methionine loading in six young healthy men with normal fasting concentrations of plasma homocysteine and cysteine. The methionine loading induced a transient increase in total homocysteine, which peaked after approximately 6-8 h. All six subjects showed a concurrent significant increase in reduced homocysteine and cysteine, which peaked 2 h after loading, and a rapid decrease in protein-bound cysteine and cysteinylglycine. The concentration of reduced cysteinylglycine was not altered. Plots of protein-bound cysteine and cysteinylglycine vs total homocysteine formed hysteretic loops, showing a time-dependent relation between these analytes. After the initial decrease, protein-bound cysteine and cysteinylglycine showed a slight, transient increase. From 12 to 24 h after loading, protein-bound cysteine approached preloading concentrations in two subjects and declined further in four subjects. The response pattern was similar for cysteine and cysteinylglycine in each subject. Simple displacement could not account for these effects, which suggests that plasma homocysteine may affect the disposition of other thiols through complex mechanisms. The presence of reduced homocysteine and the dynamic relation that exists between homocysteine, cysteine, and related compounds in plasma should be taken into account when evaluating plasma homocysteine as an indicator or causative agent of human disease.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3