Author:
Martin R B,Savory J,Brown S,Bertholf R L,Wills M R
Abstract
Abstract
An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.
Publisher
Oxford University Press (OUP)
Subject
Biochemistry (medical),Clinical Biochemistry
Cited by
176 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献