Boosted Decision Tree Analysis of Surface-enhanced Laser Desorption/Ionization Mass Spectral Serum Profiles Discriminates Prostate Cancer from Noncancer Patients

Author:

Qu Yinsheng1,Adam Bao-Ling23,Yasui Yutaka1,Ward Michael D23,Cazares Lisa H23,Schellhammer Paul F243,Feng Ziding1,Semmes O John23,Wright George L243

Affiliation:

1. Cancer Prevention Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

2. Departments of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501

3. Virginia Prostate Center, Eastern Virginia Medical School and Sentara Cancer Institute, Norfolk, VA 23501

4. Departments of Urology, Eastern Virginia Medical School, Norfolk, VA 23501

Abstract

Abstract Background: The low specificity of the prostate-specific antigen (PSA) test makes it a poor biomarker for early detection of prostate cancer (PCA). Because single biomarkers most likely will not be found that are expressed by all genetic forms of PCA, we evaluated and developed a proteomic approach for the simultaneous detection and analysis of multiple proteins for the differentiation of PCA from noncancer patients. Methods: Serum samples from 386 men [197 with PCA, 92 with benign prostatic hyperplasia (BPH), and 96 healthy individuals], randomly divided into training (n = 326) and test (n = 60) sets, were analyzed by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. The 124 peaks detected by computer analyses were analyzed in the training set by a boosting tree algorithm to develop a classifier for separating PCA from the noncancer groups. The classifier was then challenged with the test set (30 PCA samples, 15 BPH samples, 15 samples from healthy men) to determine the validity and accuracy of the classification system. Results: Two classifiers were developed. The AdaBoost classifier completely separated the PCA from the noncancer samples, achieving 100% sensitivity and specificity. The second classifier, the Boosted Decision Stump Feature Selection classifier, was easier to interpret and used only 21 (compared with 74) peaks and a combination of 21 (vs 500) base classifiers to achieve a sensitivity and specificity of 97% for the test set. Conclusions: The high sensitivity and specificity achieved in this study provides support of the potential for SELDI, coupled with a bioinformatics learning algorithm, to improve the early detection/diagnosis of PCA.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 283 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3