Genetic Algorithm for Scheduling of Laboratory Personnel

Author:

Boyd James C1,Savory John1

Affiliation:

1. Department of Pathology, University of Virginia Health System, PO Box 800214, Charlottesville, VA 22908

Abstract

Abstract Background: Staffing core laboratories with appropriate skilled workers requires a process to schedule these individuals so that all workstations are appropriately filled and all the skills of each worker are exercised periodically to maintain competence. Methods: We applied a genetic algorithm to scheduling laboratory personnel. Our program, developed in Visual Basic 4.0, maximizes the value of a fitness function that measures how well a given scheduling of individuals and their skills matches a set of work tasks for a given work shift. The user provides in an Excel spreadsheet the work tasks, individuals available to work on any given date, and skills each individual possesses. The user also specifies the work shift to be scheduled, the range of dates to be scheduled, the number of days that an individual stays on a given workstation before rotating, and various parameters for the genetic algorithm if they differ from the default values. Results: For >22 months, the program matched individuals to those tasks for which they were qualified and maintained personnel skills by rotating job duties. The schedules generated by the program allowed supervisory personnel to anticipate dates far in advance of when worker availability would be limited, so staffing could be adjusted. In addition, the program helped to identify skills for which too few individuals had been trained. This program has been well accepted by the staff in the clinical laboratories of a 670-bed university medical center, saving 37 h of labor per month, or approximately $11 000 per year, in time that supervisory personnel have spent developing work schedules. Conclusions: The genetic algorithm approach appears to be useful for scheduling in highly technical work environments that employ multiskilled workers.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3