Improved Method for Gas Chromatographic–Mass Spectrometric Analysis of 1-13C-labeled Long-Chain Fatty Acids in Plasma Samples

Author:

Hernández-Pérez José M1,Cabré Eduard2,Fluvià Lourdes1,Motos Ágata1,Pastor Cruz1,Corominas August1,Gassull Miquel A2

Affiliation:

1. Departments of Biochemistry. Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain

2. Research Unit, Departments of Gastroenterology, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain

Abstract

Abstract Background: Gas chromatographic–mass spectrometric (GC/MS) tracking of stable-isotope-labeled substrates is useful in metabolic studies. However, GC/MS analysis of long-chain fatty acid methyl esters yields results that mostly depend on their concentration in the system. We describe a protocol aimed to obviate this and other drawbacks in plasma [1-13C]palmitic and [1-13C]oleic acid measurements. Methods: Lipoproteins were separated by sequential ultracentrifugation. Free or esterified heptadecanoic acid was used as internal standard. Fatty acids were derivatized to trimethylsilyl (TMS) esters. GC separation was in isothermal mode at 210 °C for 27 min. For both TMS-palmitate and TMS-oleate, M and [M + 1] signals were simultaneously acquired with a dual acquisition program in single-ion monitoring mode. Calibration mixtures containing increasing amounts of labeled fatty acids were prepared gravimetrically to construct calibration curves for isotopic enrichment. Likewise, five calibration curves (for increasing concentrations) were constructed for each fatty acid; this allowed selection of the most appropriate curve for the concentration in a plasma sample. Results: Oleic acid-TMS ester was clearly separated from that of its stereoisomer, elaidic acid. Within a 10-fold concentration range, the isotopic ratio was independent on the amount of the analyte in the sample, with a maximum uncertainty of 0.34% in terms of molar percent excess. In addition, the within- and between-day imprecision (CV) of the method was <1%. Conclusion: Results obtained with this method are independent of concentration and sufficiently precise for tracking 1-13C-labeled palmitic and oleic acids in biological samples

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3