A Lipid Signature with Perturbed Triacylglycerol Co-Regulation, Identified from Targeted Lipidomics, Predicts Risk for Type 2 Diabetes and Mediates the Risk from Adiposity in Two Prospective Cohorts of Chinese Adults

Author:

Qiu Gaokun1,Wang Hao1,Yan Qi1,Ma Hongxia2ORCID,Niu Rundong1,Lei Yanshou1,Xiao Yang1,Zhou Lue1,Yang Handong3,Xu Chengwei3,Zhang Xiaomin1,He Meian1ORCID,Tang Huiru45ORCID,Hu Zhibin2,Pan An1ORCID,Shen Hongbing2ORCID,Wu Tangchun1

Affiliation:

1. Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China

2. Department of Epidemiology, School of Public Health, Nanjing Medical University , Nanjing 211166 , China

3. Department of Cardiovascular Disease, Sinopharm Dongfeng General Hospital, Hubei University of Medicine , Shiyan 442008 , China

4. State Key Laboratory of Genetic Engineering, Fudan University , Shanghai 200433 , China

5. CAS Key Laboratory of Magnetic Resonance in Biological Systems, University of Chinese Academy of Sciences , Wuhan 430071 , China

Abstract

Abstract Background The roles of individual and co-regulated lipid molecular species in the development of type 2 diabetes (T2D) and mediation from metabolic risk factors remain unknown. Methods We conducted profiling of 166 plasma lipid species in 2 nested case-control studies within 2 independent cohorts of Chinese adults, the Dongfeng-Tongji and the Jiangsu non-communicable disease cohorts. After 4.61 (0.15) and 7.57 (1.13) years’ follow-up, 1039 and 520 eligible participants developed T2D in these 2 cohorts, respectively, and controls were 1:1 matched to cases by age and sex. Results We found 27 lipid species, including 10 novel ones, consistently associated with T2D risk in the 2 cohorts. Differential correlation network analysis revealed significant correlations of triacylglycerol (TAG) 50:3, containing at least one oleyl chain, with 6 TAGs, at least 3 of which contain the palmitoyl chain, all downregulated within cases relative to controls among the 27 lipids in both cohorts, while the networks also both identified the oleyl chain-containing TAG 50:3 as the central hub. We further found that 13 of the 27 lipids consistently mediated the association between adiposity indicators (body mass index, waist circumference, and waist-to-height ratio) and diabetes risk in both cohorts (all P < 0.05; proportion mediated: 20.00%, 17.70%, and 17.71%, and 32.50%, 28.73%, and 33.86%, respectively). Conclusions Our findings suggested notable perturbed co-regulation, inferred from differential correlation networks, between oleyl chain- and palmitoyl chain-containing TAGs before diabetes onset, with the oleyl chain-containing TAG 50:3 at the center, and provided novel etiological insight regarding lipid dysregulation in the progression from adiposity to overt T2D.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3