New Polymorphic Short Tandem Repeats for PCR-based Charcot-Marie-Tooth Disease Type 1A Duplication Diagnosis

Author:

Badano Jose L1,Inoue Ken1,Katsanis Nicholas1,Lupski James R123

Affiliation:

1. Departments of Molecular and Human Genetics and

2. Pediatrics, Baylor College of Medicine, Houston, TX 77030

3. The Texas Children’s Hospital, Houston, TX 77030

Abstract

Abstract Background: Charcot-Marie-Tooth disease type 1A (CMT1A) accounts for 70–90% of cases of CMT1 and is most frequently caused by the tandem duplication of a 1.4-Mb genomic fragment on chromosome 17p12. Molecular diagnosis of CMT1A has been based primarily on pulsed-field electrophoresis, fluorescence in situ hybridization, polymorphic allele dosage analysis, and quantitative PCR. We sought to improve the fidelity and applicability of PCR-based diagnosis by developing a panel of novel, highly polymorphic short tandem repeats (STRs) from within the CMT1A duplicated region. Methods: We used a recently available genomic sequence to identify potentially polymorphic simple repeats. We then amplified these sequences in a multiethnic cohort of unaffected individuals and assessed the heterozygosity and number of alleles for each STR. Highly informative markers were then tested in a set of previously diagnosed CMT1A duplication patients, and the ability to identify the genomic duplication through the presence of three bands was assessed. Results: We identified 34 polymorphic markers, 15 of which were suitable for CMT1A diagnosis on the basis of high heterozygosity in different ethnic groups, peak uniformity, and a large number of alleles. On the basis of the fluorescent dye and allele range of each marker, we developed two panels, each of which could be analyzed concurrently. Panel 1, which comprised 10 markers, detected 37 of 39 duplications, whereas panel 2, which comprised the remaining 5 markers, identified 21 of 39 duplications. Through the combination of both panels, we identified 39 of 39 duplications in previously diagnosed CMT1A patients. Conclusions: The newly developed 15-marker set has the capability of detecting >99% of duplications and thus is a powerful and versatile diagnostic tool.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3